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Control of matter-wave superradiance with a high-finesse ring cavity
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We experimentally investigate light scattering from a Bose-Einstein condensate which is positioned inside
an optical ring cavity. With a cavity linewidth at the recoil limit, the resulting superradiant scattering behavior
is strongly influenced by the cavity detuning. The experimental observations are interpreted with a quantum
mean-field description and with a rate-equation model. We discuss applications in the context of quantum phase
transitions, Dicke subradiance, and nonconventional superfluidity.
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I. INTRODUCTION

In recent years, the collective behavior of atoms inside
an optical resonator has been investigated in a number of
experiments with cold thermal clouds [1–3] and with Bose-
Einstein condensates [4–6]. In these experiments the atoms
all interact with the same optical mode, which may be
interpreted as an effective long-range interaction between the
atoms (in the context of atomic clouds in optical cavities;
see, for instance, [7]). This leads to collectively excited states
which are closely related to quantum phase transitions and
dynamical instabilities [4,8]. From a different perspective,
atom-cavity combinations turn out to be useful model systems
for investigating collective scattering phenomena such as
matter-wave superradiance [4] and coherent atomic recoil
lasing (CARL) [3,9]. Cavity-enhanced Rayleigh scattering has
also been proposed to nondestructively observe correlations in
quantum gases [10]. Finally, the resonator can be exploited to
cool atomic and molecular ensembles even below the recoil
limit [6,11].

Typically, the atom-cavity system is pumped by coupling
light through one of the cavity mirrors. However, in recent
experiments the atoms have also been irradiated with an
external light beam such that the initially empty resonator
fills with photons due to Rayleigh scattering of the pump
light by the atoms. By pumping a standing-wave resonator
with an external standing wave, the Dicke quantum phase
transition has recently been observed [12]. For high-quality
mirrors and sufficiently large mirror separations, the cavity
linewidth can be reduced below the recoil frequency shift
which a photon acquires if it is scattered from an atom. Thus,
by tuning the cavity relative to the frequency of the scattered
photons, scattering from specific atomic momentum states
can be suppressed or enhanced [13]. In principle, this allows
for tailoring novel scenarios where only a few momentum
states dominate the dynamics [6]. Matter-wave subradiance
has recently been proposed in such a system [14]. Furthermore,
the atoms can be stabilized this way against excitation into
higher-momentum states.

In this paper we analyze in some detail our recent
experiment with a high-finesse ring cavity which is pumped
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by scattering photons from an external traveling wave into
the ring cavity [13]. In contrast to a standing-wave resonator,
the ring geometry offers two propagating light modes to
which the atoms can couple. Consequently, two different
recoil momenta are transferred to the atoms depending on
the direction the scattered photon travels inside the resonator.
As a consequence, a Bose-Einstein condensate, initially at
rest, fragments into a series of momentum states and forms
a rectangular lattice in momentum space. This is similar to
the well-known key experiment on matter-wave superradiance
at MIT [15,16], however, with the difference that at MIT no
cavity was used and the direction of scattering was determined
by the shape of the condensate. In Secs. II and III we introduce
the experimental scenario and discuss two models that can be
derived from the full quantum equations. A mean-field model,
which neglects quantum fluctuations, describes the complex
dynamics of the experiment reasonably well but does not allow
for a simple intuitive interpretation. However, it turns out that
efficient control of matter-wave superradiance by the cavity
is only possible for low pump intensities and consequently
weak coupling between the atoms and the light. In this regime
the mean-field model can be approximated by a rate-equation
model, which suggests a very simple picture of the underlying
physics. This is the first result of the paper. In Sec. IV
we compare the theoretical models with the experimental
observations and find that the current experiment has been
carried out in a regime where the pump intensity is too strong
for efficient control of superradiance. This will be possible
only for reduced pump intensities and longer pump times.
This is the second result of the paper. We close the paper with
a discussion and an outlook in Sec. V.

II. EXPERIMENT

The experimental setup has been described in detail in
Ref. [13]. In short, we generate a 87Rb Bose-Einstein conden-
sate (BEC) in a Ioffe-type magnetic trap and transfer it into the
mode focus of a 87-mm-long ring cavity with a finesse of F =
130 000. The plane of the resonator is oriented perpendicular
to gravity. The focus of the TEM00 mode at the position of the
atoms has a slightly elliptical cross section with beam radii of
wx = 88 μm (horizontal) and wy = 117 μm (vertical), result-
ing in a mode volume of V = 1/2Lπwxwy = 1.37 mm3. The
cavity-to-free-space scattering ratio (Purcell factor) amounts
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FIG. 1. (Color online) Geometry of the experiment: A BEC is
created in a Ioffe-Pritchard trap and then placed in the waist of a
TEM11 mode of an optical ring cavity (green). A pump beam is
irradiated from the side under the angle α = 37◦. A single-photon
counter records the photons transmitted through one of the cavity
mirrors.

to η = 6F/(πk2wxwy) = 0.38 [17]. The half-line width of
the cavity is identical to the amplitude decay rate κc = 2π ×
13.0 kHz and slightly smaller than the two-photon recoil shift
for rubidium of ωrec = 2π × 14.4 kHz. The symmetry axis of
the cigar-shaped BEC is oriented parallel to the optical axis of
the cavity and to the magnetic field of the trap at the position of
the condensate. The BEC is irradiated with a linearly polarized
external pump laser beam with its wave vector k lying in the
plane of the ring cavity at an angle of α = 37◦ relative to the
normal of the cavity’s optical axis (see Fig. 1). The polarization
of the pump light is oriented normal to the plane of the cavity,
and its intensity typically amounts to several 10 mW/cm2. A
two-mode offset locking scheme [18] controls the detuning �c

between the pump laser and the resonance of the empty cavity
with a precision of about 100 Hz, which is by far sufficient
to resolve the cavity resonance line. The detuning �a of the
pump laser relative to the rubidium D1 line (F = 2 → F ′ = 2)
is chosen in the range of a few gigahertz. The experimental
observations turned out to be independent of the sign of the
detuning (see also Figs. 6 and 7 below and [19]).

After a variable pump duration τ of typically 200 μs the
pump laser is turned off, and the BEC is released from the
trap. After 15 ms of ballistic expansion an absorption image is
taken. It shows the momentum distribution of the atoms inside
the trap at the time when the pump beam is turned off. The
light that the atoms scatter into the left running cavity mode is
observed by counting the photons that are transmitted through
one of the cavity mirrors.

When the frequency of the incident pump light is far
detuned from a resonance of the cavity or when its polarization
is chosen parallel to the cavity plane (p polarization), no
modification of the condensate’s momentum distribution is
observed, and no photons are counted. However, when the
pump frequency is close to a cavity resonance and for s

polarization, the absorption image shows a rectangular pattern
according to a discrete superposition of specific momentum
states [Fig. 2(b)]. At the same time, a large number of photons
are scattered into the cavity [Fig. 2(a)]. In the experiment,
the detuning �c, the pump intensity I , and pump duration τ

0 100 200
0

2

4

6

time ( s)

(a) (b)

lig
ht

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

FIG. 2. (Color online) Main signatures of the experiment. (a) A
single-photon detector counts the photons which are scattered into
the left running cavity mode and leak out through one of the high-
reflectivity mirrors. The red (light gray) line indicates the power
of the pump beam in arbitrary units. The blue (dark gray) spikes
represent single-photon counts. (b) Atomic momentum distribution
observed via time-of-flight absorption imaging. The populations in
the individual momentum states are obtained by summing the pixel
values in a fixed area (red rectangle).

are varied, and the relative numbers of atoms in the different
momentum states are derived from the recorded images.

III. THEORETICAL DESCRIPTION

The theoretical description is based on Ref. [20]. The
atomic condensate is initially at rest. An incident pump photon
with wave vector kp is scattered by an atom into one of the two
cavity modes with wave vectors k1 or k2 (see Fig. 3), and the
atom acquires a corresponding momentum kick. Subsequent
scattering of photons leads to a spreading of the atoms over a
rectangular lattice in momentum space. The momentum states
can be labeled by the number of photons m and n an atom has
scattered into the right- and left-propagating cavity modes,
respectively (see Fig. 1). A specific momentum transition is
related to a specific frequency shift of the scattered photons.
Depending on the detuning of the photon frequency relative to
the resonance of the cavity, the transition can thus be enhanced
or suppressed.
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FIG. 3. (Color online) Momentum space accessible to the atoms.
An incident pump photon with wave vector kp is scattered by an atom
into one of the two cavity modes with wave vectors k1 or k2. Due to
the discrete momentum transfer during scattering the possible atomic
momentum states (m,n) form a rectangular lattice in momentum
space. The blue (gray) numbers indicate the negative recoil frequency
shift of the scattered photon in units of the two-photon recoil
frequency of 14.4 kHz. The states with open circles are occupied
if photons are scattered from the cavity into the pump beam.
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Photons which circulate inside the resonator can also
be scattered by the atoms back into the pump beam with
significant probability. By this process, momentum states
with negative quantum numbers m and n may be occupied
(open circles in Fig. 3). Finally, photons can be scattered
between the forward- and the backward-propagating cavity
modes (cross-cavity-mode scattering). This changes m and
n simultaneously by one unit but with opposite sign. Recoil
heating caused by scattering into free space is neglected in our
analysis.

Since the atomic motion takes place in the plane of the
ring cavity, each atom is described by two noncommuting
position and momentum variables. Depending on the direction
into which a photon has been scattered, two different recoil
momenta can be imparted to an atom, h̄q1,2 = h̄kp[ex cos α −
ez(sin α ± 1)]; see Fig. 3. We chose a coordinate system
generated by the unity vectors

e1,2 ≡ 1√
2

(
ex

cos α√
1 ± sin α

∓ ez

√
1 ± sin α

)
. (1)

In this coordinate system the momentum p = p1e1 + p2e2 of
an atom is given by the two normalized momentum variables
Pμ = pμ/h̄qμ, with μ = 1,2. The atomic position x = x1e1 +
x2e2 is encoded in the two phases θμ = xμqμ. Treating the
atomic motion as being quantized, the commutation rule can
be written [θ̂μ,j ,P̂ν,m] = iδμ,νδj,m, with j,m = 1, . . . ,N .The
annihilation and creation operators for the cavity modes satisfy
[âμ,â†

ν] = δμ,ν . The many-particle Hamiltonian Ĥ = ∑N
j=1 ĥj

then explicitly reads

Ĥ =
N∑

j=1

ωr1P̂
2
1j + ωr2P̂

2
2j + i

g�

2�a

[
â
†
1e

iθ̂1j + â
†
2e

iθ̂2j − H.c.
]

+ g2

�a

[â1â
†
2e

i(θ̂2j −θ̂1j ) + H.c.]

−
(

�c − Ng2

�a

)
(â†

1â1 + â
†
2â2). (2)

Here, ωr1,2 = 1
2ωrec(1 ± sin α) is the projection of ωrec onto the

two cavity modes. The coupling strength between the cavity
modes and the atomic motion is given by g�/ (2�a), with the

atom-cavity coupling strength g =
√

d2
effω

2ε0h̄V
= 2π × 48. 9 kHz

(which is equivalent to half the single-photon Rabi frequency)
and the Rabi frequency due to the pump beam � = deffEp/h̄ =
2π × 1.514 MHz

√
Ip cm2/ mW. Ep is the rms electric field

of the pump beam at the position of the atoms. It is related to the

pump intensity by Ep =
√

2Ip

cε0
= 87.0 V/ m

√
Ip cm2/ mW.

The effective dipole matrix element deff contains the ma-
trix elements d1 := −

√
1
6d and d2 :=

√
1
2d of the two σ−

transitions (F = 2,mF = 2 → F = 1,mF = 1; F = 2,mF =
2 → F = 2,mF = 1), which are driven by a field with linear
polarization normal to the quantization axis. The quantiza-
tion axis is set parallel to the optical axis of the cavity.
The reduced matrix element d = 〈

J = 1/2 ||er|| J ′ = 1/2
〉 =

2.537 × 10−29 C m, and the roots are the Clebsch-Gordon
coefficients. The difference between the resonance frequencies
of the two transitions of 812 MHz leads to a negligible
correction of below 5%. An additional factor of 1

2 takes

care of the fact that only one circular component of the
linearly polarized light field couples to the σ− transitions.
Thus deff = 1

2

√
d2

1 + d2
2 = 0.408d. The detuning of the pump

frequency ωp from the resonance frequency ω0 of the D1 line
of 87Rb is �a = ωp − ω0.

In the second quantized representation of the particle field
the many-body Hamiltonian reads

Ĥsq =
∫ 2π

0
dθ1

∫ 2π

0
dθ2�̂

†(θ1,θ2)ĥ(θ1,θ2, − i∂θ1 ,

−i∂θ2 ,a1,a
†
1,a2,a

†
2)�̂(θ1,θ2). (3)

The field operators have to satisfy the commutation re-
lations [�̂(θ1,θ2),�̂†(θ ′

1,θ
′
2)] = δ(θ1 − θ ′

1)δ(θ2 − θ ′
2). Follow-

ing [20], we expand the field operators in momen-
tum eigenstates �̂(θ1,θ2) = 1

2π

∑
m,n ĉm,ne

imθ1einθ2 , where

[ĉm,n,ĉ
†
m′,n′ ] = δm,m′δn,n′ and

∑
m,n |ĉm,n|2 = N . The Heisen-

berg equation yields equations of motion for the fields â1, â2,
and ĉm,n. For large occupation of the two resonator modes
and for the momentum states the field operators can be
approximated by complex numbers,

da1

dt
= g�

2�a

∑
m,n

c∗
m,ncm−1,n − i

g2

�a

a2

∑
m,n

c∗
m,ncm−1,n+1

+ i

(
�c − Ng2

�a

)
a1 − κca1, (4a)

da2

dt
= g�

2�a

∑
m,n

c∗
m,ncm,n−1 − i

g2

�a

a1

∑
m,n

c∗
m,ncm+1,n−1

+ i

(
�c − Ng2

�a

)
a2 − κca2, (4b)

dcmn

dt
= −i(ωr1m

2 + ωr2n
2)cm,n

+ g�

2�a

[a∗
1cm−1,n + a∗

2cm,n−1 − a1cm+1,n − a2cm,n+1]

− i
g2

�a

[a1a
∗
2cm+1,n−1 + a∗

1a2cm−1,n+1]

+ i

(
�c − Ng2

�a

)
(|a1|2 + |a2|2)cm,n. (4c)

The amplitudes cm,n of the momentum states are normalized
to the total number of atoms in the condensate

∑ |cn|2 =
N . Similarly, |a1|2 and |a2|2 are the number of photons in
the two modes of the cavity. The resonator detuning �c =
ωp − ωTEM00 is defined as the difference of the pump laser
frequency and the frequency of the TEM00 mode of the empty
resonator. The terms containing the decay rate κc have been
introduced heuristically to describe cavity damping. The last
term in Eq. (4c) leads to a phase factor which is the same for
all momentum states. It thus can be neglected.

For small pump intensities, the populations of the mo-
mentum states change on a time scale much longer than the
cavity decay time. In this regime it is possible to adiabatically
eliminate the equations for the resonator and derive simple
rate equations for the population of the momentum states.
Small coupling is achieved for collective Rabi frequencies√

Ng�/ (2 |�a|) 	 κc. For deriving simple rate equations
we also neglect the term proportional to g2. It describes
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cross-cavity-mode scattering and comes into play only after
many photons have been scattered into the resonator and
the light power in the resonator becomes comparable to the
power of the pump beam. Rate equations are thus valid
only for small photon numbers in the cavity. By substituting
cm,n = c̃m,ne

−i(m2ωr1+n2ωr2)t and formally integrating Eqs. (4a)
and (4b) one obtains

a1(t) = g�

2�a

∑
m,n

e−iωr1(1−2m)t
∫ t

0
dt ′ c̃∗

m,n(t − t ′)c̃m−1,n(t − t ′)

× e[iωr1(1−2m)+i�c−κ]t ′ ,
(5)

a2(t) = g�

2�a

∑
m,n

e−iωr2(1−2n)t
∫ t

0
c̃∗
m,n(t − t ′)c̃m−1,n(t − t ′)

× e[iωr2(1−2n)+i�c−κ]t ′dt ′.

For small pump intensities the amplitudes c̃i,j (t) vary slowly
in time and can thus be shifted outside the integral. The
integration can now be carried out analytically. The resulting
expressions for the optical fields are substituted in Eq. (4c),
and one obtains equations for the populations Nm,n := |c̃m,n|2.
By dropping all coherences, i.e., products of the form c̃∗

m,nc̃m′,n′

with m 
= m′ and n 
= n′, one arrives at the rate equations

dNm,n

dt
= 2

(
g�

2�a

)2

κ

(
Nm,nNm−1,n

[�c + ωr1(1 − 2m)]2 + κ2

+ Nm,nNm,n−1

[�c + ωr2(1 − 2n)]2 + κ2

)
(6)

− 2

(
g�

2�a

)2

κ

(
Nm,nNm+1,n

[�c − ωr1(1 + 2m)]2 + κ2

+ Nm,nNm,n+1

[�c − ωr2(1 + 2n)]2 + κ2

)
.

Each momentum state exchanges populations only with its
four neighboring states. The transitions feature Lorentz-shaped
resonances with specific resonance frequencies. By controlling
the resonator, one can thus individually tune each of the
four momentum-transitions into resonance. Furthermore, the
transition rate depends not only on the population of the initial
state but also on the final state. This can be interpreted as
bosonic enhancement due to quantum statistics. Also, note that
each momentum state loses population to higher-momentum
states and receives population from lower-momentum states.
The population thus always flows to higher momentum.
Starting with a condensate at rest, there will be no population
transferred into states with negative m or n. This is in contrast
to the solutions of the full Eq. (4c), which also includes
photon scattering from the resonator into the pump beam.
Numerical simulations of the rate equations show that the
initial population of the resting condensate is shifted to
higher-momentum states preferentially as a whole, such that at
a given time one typically finds a maximum of two occupied
states. This is the result of strong mode competition due to
bosonic enhancement: Once a state is slightly more populated
than its neighbors, it attracts population with an increasing rate.
By tuning the resonator with a proper frequency sequence, it
should thus be possible to transfer the condensate into an
arbitrary momentum state in a controlled way.

Δ κ

FIG. 4. Maximum possible population difference between the
two momentum states with m = 1, n = 0 and m = 0, n = 1 for
various pump laser detunings �c − UN and pump intensities. The
solid (dashed) line shows the result of the mean-field (rate) model.
Initially, 80 000 atoms are in the zero-momentum state with m = 0,
n = 0. The simulated momentum space is in the range −2 � m � 3
and −2 � n � 2. To start the dynamics each finite-momentum state
is initially populated with one atom. The initial number of photons
in the resonator is set to zero. The dynamics is simulated for 10 ms
after the pump beam has been turned on and the maximum population
difference within this time interval is plotted. After 10 ms almost all
atoms have scattered more than one photon, and only momentum
states with n,m > 1 are populated.

The rate equations are valid only if the coherences between
the momenta can be omitted. This is especially true at the
beginning of the dynamics when only one or two momentum
states are macroscopically occupied. In fact, simulations of
the full Eq. (4c) (without cross-cavity-mode scattering) show
that in the limit of small pump power the solutions of the rate
equations are reproduced for the low-momentum states. For
higher momenta the agreement is only qualitative, and the rate
model fails to describe the quantitative details. Nevertheless,
for small intensities the full equations also show a lack of
scattering back into the pump beam and a clear tendency
to transfer the population as a whole. For stronger pumping
the addressability of individual transitions by proper tuning
of the cavity is gradually lost. This is to be expected when
the collective Rabi frequency exceeds the cavity linewidth
such that power broadening reduces the cavity resolution. The
fast dynamics of the populations then increases the frequency
uncertainty of the momentum states beyond the resolution
of the resonator. To show this effect we plot the maximum
population difference that can be reached for the momentum
states |m = 1,n = 0〉 and |m = 0,n = 1〉 for various detunings
and intensities (see Fig. 4). For small pump intensities, the rate
model and the full model reasonably agree, and the population
difference shows a clear sensitivity to the cavity detuning.
According to the full equations, the frequency sensitivity is
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Δc = -300kHz -270kHz -240kHz -210kHz -170kHz 

FIG. 5. Time-of-flight absorption images for various pump laser detunings �c. The pump duration was 200 μs with a pump beam intensity
of Ip = 50 mW/cm2 and an atomic detuning of �a = −2π × 4.7 GHz. The solid lines indicate the positions of states with m = 0 and n = 0.

lost for higher intensities. The rate model fails to describe this
effect correctly.

IV. OBSERVATIONS

Figure 5 shows absorption images for various pump laser
detunings, 200 μs after the pump laser has been turned on.
For a pump intensity of I = 50 mW/cm2 and an atomic
detuning of �a = −2π × 4.7 GHz, the coupling is strong,
and the rate model does not hold. Nevertheless, a detuning by
a few κc still substantially changes the momentum pattern.
Each momentum state scatters pump light into the cavity
with an individual recoil shift. If the scattered light is in
resonance with the cavity, the scattering process is enhanced
or otherwise suppressed. Furthermore, the oblique angle of
incidence of the pump light lifts the degeneracy between
the two counterpropagating cavity modes. Depending on the
detuning, the light is thus preferentially scattered in one of the
two cavity modes. Scattering from higher-momentum states
suffers from large recoil shifts and is eventually disrupted.
Note that for detunings of −270 and −240 kHz, backscattering
into the pump beam gives rise to a momentum state with
negative m and n. For negative detuning from the atomic
resonance, �a < 0, the cavity detuning for which scattering is
observed is also negative, �c < 0. As discussed in Ref. [13],
the refractive index of the atomic cloud shifts the resonance
frequency of the cavity modes by the amount NU0 = Ng2/�a .
However, the experimentally observed detuning on the order of
200 kHz is surprisingly large and cannot be fully explained by
condensed and thermal atoms which occupy the cavity-mode
volume. Here, one can speculate to what extent the finite size
of the atomic cloud plays a role. Also, recently discussed Mie
resonances [21] may be important.

For comparison with theory we restrict ourselves to the
low-lying momentum states |m,n〉 = |0,0〉, |1,0〉, |2,0〉, and
|1,1〉. The dots in Fig. 6 show the observed relative occupation
of the four selected momentum states for various pump
durations. In total 21 absorption images have been recorded
for various pump duration times, and the relative occupation
numbers have been derived. The data have been binned in
time intervals of 10 μs and averaged over each bin. Because
of the background in the absorption images, the population
numbers can be determined only with an error of several
tens of percent. Nevertheless, one can clearly see that the
populations evolve in time from the original state |0,0〉 via
|1,0〉 toward |2,0〉, with a small portion being transferred
to the state |1,1〉. The predictions of the full equations and
of the rate model are shown as solid and dashed lines. The

agreement with the mean field is not perfect but is reasonable.
As discussed in Sec. III, the rate model predicts a population
transfer as a whole, a behavior which is clearly not observed in
the experiment. The simulations are very sensitive to the initial
atom numbers in the momentum states and photon numbers in
the resonator. The atom number is determined by calculating
the thermal population of the discrete momentum states with
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FIG. 6. Population of selected momentum states (m,n) for various
pump durations. The pump intensity amounts to I = 70 mW/ cm2,
the detuning of the pump frequency from the atomic resonance is
�a = 2π × 4.3 GHz, and the detuning from the cavity mode is �c =
2π × 253 kHz. The solid (dashed) line presents the prediction of the
mean-field (rate) model for an initial atom number of N = 80 000 in
the condensate. The finite-momentum states are initially occupied
with Nth = 1000 and Nth = 5 thermal atoms distributed over the
discrete-momentum states according to Bose-Einstein statistics. The
initial condition for the cavity field is a1 = a2 = 5, corresponding to
25 photons in each of the two modes. The simulated momentum space
is in the range −2 � m � 3 and −2 � n � 2. In the simulations the
cavity detuning has been set to �c − NU0 = 2κ .
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a Bose-Einstein statistics for a quantum gas below the critical
temperature for condensation. In this regime, the only free
parameter is the number of thermal atoms Nth distributed
over the discrete momentum states. It cannot be determined
experimentally with good accuracy and has to be estimated.
In Fig. 6 simulations are plotted for Nth = 5 and Nth = 1000.
While the rate model gives substantially different results for
the two numbers, the mean-field model is not very affected.
However, it is very sensitive to the initial photon number,
which obviously plays no role in the rate model. Here, the
best agreement with the observation is obtained with 25 initial
photons in each of the two cavity modes. The assumption of
some initial photons in the cavity is reasonable since stray light
from the windows of the vacuum chamber and other optical
elements may hit the cavity mirrors, which then scatter the
light into the cavity modes. The Purcell effect also enhances
this kind of unwanted scattering.

The intensity dependence of the atomic population after
a pump duration of 200 μs is shown in Fig. 7. In total 12
absorption images have been recorded for various intensities,
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FIG. 7. Relative population of selected momentum states (m,n)
for various pump beam intensities I . The pulse duration is 200 μs,
and the detuning from the atomic resonance �a = −2π × 8.4 GHz.
The laser is resonant to the empty cavity mode, �c = 0. The solid
(dashed) line presents the prediction of the semiclassical (rate) model
for an initial atom number of N = 80 000 in the condensate. The
finite-momentum states are initially occupied with Nth = 1000 and
Nth = 5 thermal atoms outside the condensate distributed over the
discrete-momentum states according to Bose-Einstein statistics. The
initial condition for the cavity field is a1 = a2 = 5, corresponding
to 25 photons in each of the two modes. The simulated momentum
space is in the range −2 � m � 3 and −2 � n � 2. The effective
cavity detuning has been set to �c −NU0 = 0.8κ .

and the relative occupation numbers have been derived. Again,
the typical error amounts to 50%, particularly for small
occupation numbers. The predictions of the full equations
and of the rate model are shown as solid and dashed lines.
With increasing intensity, population is transferred to higher-
momentum states. Again, the rate model drastically fails to
describe the data, while agreement with the mean-field model
is reasonable.

V. DISCUSSION AND OUTLOOK

The experiments presented in this paper are performed in
the regime of strong pumping, where the collective Rabi fre-
quency exceeds the cavity linewidth. The frequency selectivity
of the cavity is thus limited and cannot be efficiently exploited
to control the dynamics of the atom-light interaction. The
nonadiabatic response of the cavity leads to a complex dy-
namics with irregular oscillatory exchange of energy between
light and atoms. This dynamics can be well described with
a mean-field quantum model but not with a rate-equation
model. The experimental data are noisy; however, a better
data quality requires substantial improvement of the apparatus.
Since the atoms spread out over many momentum states,
the atom number per state is small and difficult to observe
in the absorption images against the background noise. An
exact determination of the atom number is also required to
control the detuning of the cavity due to the atomic index of
refraction. The simulations show a strong sensitivity to the
initial conditions. In fact, if all technical noise can be sup-
pressed and only quantum fluctuations remain, the dynamical
instability can be interpreted as a quantum phase transition.
This strictly holds only for a homogeneous quantum gas and
plane light waves. In the experiment, however, we have to deal
with localized resonator modes and cigar-shaped condensates.
While in a homogeneous gas any other but forward scattering
is triggered by fluctuations only, a finite gas exhibits Mie-type
scattering in many directions [21–23]. For the future, it
will thus be very interesting to understand how Mie-type
scattering triggers the instability and potentially covers the
quantum phase transition. Resonant photons deposited inside
the condensate by light-induced collisions may also be of some
importance [19]. Beyond triggering phase transitions, there is
also a general interest in collective scattering from a finite
atomic cloud [24–26].

Regardless of how exactly the instability is triggered, it
nevertheless allows us to stably prepare the atoms in an un-
conventional superfluid quantum state with finite momentum
provided that the light scattering stops for higher-momentum
states. This is possible in the rate-equation regime, where
the frequency sensitivity of the cavity is fully developed.
For higher-momentum states the recoil shift exceeds the
cavity linewidth, and the scattered light is no longer resonant
with the cavity. The dynamic stops and the system relaxes
into a metastable state with no light in the cavity and the
atoms in a superfluid state of finite momentum. Since the
required dissipation is provided by the cavity and its limited
linewidth, the process resembles scenarios in which the atoms
are transferred into low-energy states with cavity cooling [27].
For weak pumping the full equations are well approximated
by the rate-equation model. In this regime, the decay into a
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high-momentum state can thus be interpreted as a consequence
of mode competition due to bosonic enhancement.

A similar picture also applies to a recently proposed sce-
nario for investigating Dicke-type subradiance [14]: Scattering
from the zero-momentum state into a target state of finite
momentum is inhibited by means of a second pump laser.
It depletes any population from the target state and, by this,
suppresses any bosonic enhancement. The remaining sponta-
neous rate is orders of magnitude smaller and can be neglected.
This effect is closely related to Dicke subradiance [28,29], a
phenomenon which is barely investigated experimentally with
atomic clouds [30,31].

The rate-equation regime can be reached for reduced
light intensities (<1 mW/cm2) and consequently longer
pump durations beyond 1 ms. At this time scale, collisions
between the atoms begin to play a role. The momentum states
imprinted on the condensate during light scattering correspond
to velocities higher than the critical velocity for superfluidity.
The atomic motion is particle-like, and scattering between the
atoms may lead to heating. It remains to be seen to what extent
the coherence of the condensate wave function is affected.

In summary, we have analyzed a recent experiment on
cavity-assisted light scattering from a Bose-Einstein conden-
sate. From a mean-field description of the atomic matter field, a
rate-equation model has been derived by adiabatic elimination
of the light field. The experiment has been carried out in the
strong-pumping regime and can be described by the mean-field
model with reasonable agreement. The rate-equation model
approximately holds in the weak-pumping regime, where the
time scale of the atomic motion exceeds the cavity decay time.
In this regime the spectral resolution of the resonator is fully
developed and can be used to study novel effects such as
unconventional superfluidity and Dicke subradiance.
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